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Abstract—The theoretical study is made of heat transfer between dilute gas-solid flows (§ < 3 per cent)
at a stabilized section and channel walls at ¢ = const. For the conditions under consideration the energy
equation is reduced to the form of the modified Lyon integral. The solution is obtained for developed
turbulent transfer with regard for the effect of solid particles upon hydrodynamical characteristics of a
carrying agent. The relations are established which according to pressure loss data allow calculation of
the rate of heat transfer with a flow as well as anlysis of the effect of the main factors upon the integral
result. The relations are obtained for negligibly small and essential temperature slip of components. In
the latter case the additional thermal resistance due to the finite rate of intercomponent heat transfer is
taken into consideration.

The calculation results and the available experimental data are compared. Their satisfactory agreement
is found, and the effcect of individual thermal resistances upon total heat transfer is shown.
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NOMENCLATURE

thermal diffusivity;

heat capacity;

channel diameter;

particle diameter;

specific heat flux;
dimensionless radius;

mass flow rate;

cylindrical coordinates;
temperature,

velocity;

ratio of water numbers of compo-
nents;

Prandtl number;

Nusselt number;

Reynolds number;
heat-transfer coefficient;

true volumetric concentration;
viscous sub-layer thickness;
Karman constant;

drag coefficient;
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£

longitudinal velocity loss coefficient
with impact;

mass flow rate concentration;
kinematic viscosity;

dynamic viscosity;

channel cross-section;

density;

temperature slip coefficient of com-
ponents.

disperse flow;

solid particles;
turbulent analog;

wall value;

impact;

flow without particles:
transverse direction;
dynamic velocity;
flow core;

viscous sublayer.
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INTRODUCTION

THE Gas flows with suspended solid particles
are a perspective mode of heat agent since
these may ensure intensive heat removal with
high proper heat capacity. For this reason a
number of studies on heat transfer with such
flows have been recently carried out. The review
and comparative analysis of such investigations
are given in [1]. For concentrations within a
range (2 < u < p.,) the essential increase in the
heat transfer coefficient proportional to u”
where n £ 1 is observed. In this case the increase
in Nu, appeared to be essentially different under
various conditions. For small concentrations
qualitative changes are revealed, i.e. heat transfer
with a flow at u ~ 1-3 may be less intensive
than that with a pure gas.

So much essential difference in the nature of
the effect of particle concentration upon the rate
of heat transfer with a flow cannot be explained
by the known solutions. This is due to the use of
two extremely essential assumptions in the
analysis.

1. Temperature and velocity slip of compo-
nents is considered to be negligibly small [1, 4,
5]. As will be shown below, in some cases (coarse
particles) this may lead to essential overestima-
tion of the heat transfer rate.

2. Tt is considered that particles appear not
to influence a velocity structure of a carrying
agent (pulsation velocities and viscous sublayer
thickness), [2-5]. If it is taken into account that
according to [1] a decrease in the thickness of
a viscous sublayer due to particles is the main
mechanism to intensify heat transfer with flow,
then it is clear that the use of the second assump-
tion leads to an essential underestimation of
Nu,.

The present paper gives an attempt to solve a
thermal energy equation for a disperse flow
without introducing so much essential assump-
tion.

STATEMENT OF PROBLEM

Heat transfer with a gas suspension flow at a
thermal stabilization section at ¢, = const is
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considered. According to [1]

dt, ot 0%t
ﬁpscsvsa— + (1 - ﬁ)pcva = j‘sﬁl“ (W +

10t 2t 1ot
+ ;5) + M1 - ﬁF)(EP + 7@7)' (1)

Neglecting thermal conduction in the axial
direction, conductive transfer at the points of

contact between particles and a wall (fy = 0)
and using turbulent conduction analogs

A =(1 - Ppca* Q)

* __ % .
)'s - ﬂpscsas ’

it is possible to arrive at

ot ot
a- ﬁ)c‘)v(E)_c + ré_x)

_1e [(,1 %+ l;")rg:l. 3)

ror or
In a developed turbulent flow temperature and
velocity non-uniformities are localized in a
thin layer adjacent to a wall. Therefore, when
considering balance expressions it is possible,
with a high accuracy, to assume
p=p  o=7; @
The bar in expression (4) means averaging
of a quantity with respect to a cross-section.
Owing to the mixing effect of particles for gas
disperse flow, expression (4) is still more applic-
able than for continuous ones. Then, from the
heat balance equation for an element dx it
follows

ot ot 4q
—_ S = W . 5
T4 Dupc(1 — B) ©)

t==¢

From expression (3) with regard for expression
(5)and R = r/r, it is possible to obtain

d dt
2q Rry, = aR [(/l + A* + A:)R@]. 6)
Hence R
j RdR

dr = R. (7
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The mean calorimetric flow temperature m a
cross-section X
cp(l = B[ (1 + ZordQ
2

cpl — B) L 1 + Z)dQ

i, =

1

=li£qﬁ2 tRAR
14+ 2
0

1 R
_L1+ Z""[tw - 2J(JRdR>dt]
152z
0
; 3
1+ Zo, 1{ R3dR
= [tw b q“(zLH*H:)} ®

1+ 27
0

Finding a temperature drop (¢, —i,) from
equation (8), we have

1

o M, —E) 1 AR*dR
Nuj' = —2—F = —————
q.D 224+ 2%+ A
3
Aty Z(1 - o)
_— 9
q,D 1 + Zyp, ©)

Formula (9) may be considered as some
extension of the integral Lyon expression to the
case of disperse flow with essential temperature
slip of components. In this case the account for
temperaturc slip of components leads to the
fact that additional thermal resistance (second
addend in formula (9)) appears. Hence, the
inverse dependence of the heat transfer rate
(Nuy) upon temperature flow non-equilibrium
conditions (1 — ¢,) follows uniquely.

The physical reason of the onset of additional
thermal resistance at @, # 1 is the finite rate of
an intercomponent heat transfer process being
a part of total heat transfer between the whole
flow and wall.

FLOW WITHOUT TEMPERATURE SLIP OF
COMPONENTS
For practically equilibrium gas suspension
flow (¢ — 1) when a two-layer flow model is
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used, then expression (9) reduces to the form:

Ry 1
_ 1[AR*dR 1
(Nufl)q‘t:l:—z-‘[m‘f‘z‘fdlz. (10)
0 131

Taking into account a unique (turbulent)
transfer mechanism of heat and impulse by
components in a flow core, take as a first
approximation

a _ .
a* v

Pr* = Pr*, (1

This assumption is at least more substantiated
than those in [2, 3] a¥/a* = 0 and a*/a* = 1 in
[1,4].

Equality (11) does not establish a similar
a priori relationship between molar and a mole-
cular transfer coefficients, but corresponds to
the statement on the similarity of different
turbulent transfer processes for each component
individually. In this case, with regard for
expression (2)

A+ A a*
A a co(l — p) a*
Pr v* cn¥

For turbulent flows it may be considered that
Pr* = 1. The ratio of turbulent analogs of the
dynamic viscosity coefficient is determined in
terms of the effective von Karman constant
according to the approximation of the data given

in [6].
Nt s
T

LGB ai‘]

(/x0)?* = (1 + 016 u®%)2. (13)

In this case

A* 4+ A* v¥ Cq
T = PTT{I +;[)c/xo)2 - 1]}

*

—prlw (19
1%
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Hence
Ry 1

_ 1 [ RdR 1
(Nuz Y,y :;J7+2JdR. (15)

o Pro-x R

Thus, formula (15) differs from the known one
for uniform flows [7] only by a multiplier »~!
in the first integral which does not depend upon
a radial coordinate. Then, from formula (7)
it follows

! 1
T 2xPrReX J(E/32)

I Rev 14 _ 3
1" W \32) T2
1v9 32y 1 1
* 23Re\ &) T 2| %X PrReyE/32)

ro 3 0
X (ln—(-S - 5) + —r;il (16)

For making calculations by means of relation
(16) it is necessary to know the friction coefficient
& and viscous sublayer thickness ¢ of a carrying
agent involving particles in it.

The quantity ¢ characterizes friction stresses
only of a liquid which are defined in terms of
total resistance of the whole disperse flow with
no regard for the effect of direct interaction
between particles and a wall. The hypothesis
on equal probability for collision of all particles
with a wall is made, whose application is mostly
substantiated for vertical flows. In this case
& # &, and is determined by the expression

(Nu; ')

oe=1

4
AP, = n, nDL.my,, {—

nD?
ng L
ZE'CB psvswv;+ﬂ
AP,
ézéf_éim=éf_1L o
2p”

Cr ot Ut [(C0)\ Vs
=& NC(P+U'0+\/<8>US H.

(7

The quantity ¢’, = v, /v’ takes into account
component slip by a fluctuation velocity and is
found by the relations obtained in [8], v/, /v,
characterizes the influence of particles upon
carrying agent turbulence [9]. The axial particle
velocity at an impact moment v,, is determined
by a liquid one at a distance of a particle diameter
from a wall minus a relative particle velocity.

Not introducing the additional assumptions,
calculate a thickness of a viscous carrying-
agent layer adjacent to a wall in a suspension
flow. The integral identity

v 8 2 v
F: E =r—(2) D—Ordr
4]

may be revealed using the two-layer flow model
earlier accepted. Neglecting small-order terms
in the expression obtained by integration allows
determination of § by solving a simple transcen-
dental equation

o _ 8 3_ £ é

With regard for formula (19) expression (16)
may be written as follows

_ 11 1 /16 0 7
(Nuf 1),,,,t=1 = E[m(@ - ;;) + a] (20

Here the addends correspond to thermal resist-
ances of a core and viscous sublayer in a gas
suspension flow

Nuf — Roc + ROb
Nugo -1 Ry + Rp

1 < 16 @) N @
_ Pr\Reé, 1y o 1)

116 8) 3
Prx\Rel r, o

TEMPERATURE NON-EQUILIBRIUM FLOW
In order to determine the rate of heat transfer
with gas suspension flows at ¢, # 1, retumn to
the analysis of relation (9). Use the formula

(18)

(19)
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from [1] on the basis of [4] for temperature
slip of components

o~

S=1

(P,=?

g,7D(1 +2)[1 — exp (—px)]
Ge(l +2Z)pt,; + q,nDZ[1 — exp (—px)]

Here p = 6o (1 +Z/(cppd); « is the inter-
component coefficient. With

(22)

heat-transfer
regard for formula (22) the correction for ¢, # 1
is of the form:

My Z( — @) _ inZ[1 — exp (—px)]
q.0 1+ ro, Ge(l + z)p

. 2 Z x ds 2 cspsvs_l_
T 3(1 +2)? D/ cpv Nu,

{1 — exp |:— —60(;(; :(iZ)x]} (23)

According to formulae (9) and (23) the relative
rate of heat transfer with gas suspension flows
at a stabilization section may be expressed by
the following formula
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ratio for components Z in equation (23) has a
maximum at Z = 1 and shows a decrease in the
heat-transfer rate over a range 0 < Z < 2, that
was mentioned in the literature. Formula (24)
written in terms of thermal flow core resistances
R, viscous sublayer R, and intercomponent
heat-transfer resistance R, assumes the form

Nu, Ry _ R, + R,,
Nu, R, (R +Rp),

. (25
+R,,

For gases formula (24) is essentially simplified

(Pr~1)
Nup | 1(& ReCod)  Relpd
Nu, w\ & 16 r, 16 r,
+ L Z dszcspsvséoRe ! (26)
12(1 +Z)*°  D%*cpvNu, |

COMPARISON WITH EXPERIMENTAL DATA

In order to compare the relation obtained with
direct test data the experimental works on
pressure losses and heat transfer are used. As
the preliminary analysis has shown, the condi-

1/ 1/ 16 50) O
—| — RS — + —
Nu, 2| Pr\Re, rg To

Nu, 1[ 1 (16 &
2| Pre\Reé 1y

Formula (24) differs from formula (21), ie.
in the denominator there appears the last
addend expressing the effect of the rate of inter-
component heat transfer (correction for ¢, # 1).
Relation (23) passes over into the known expres-
sion obtained in [3] only if x — co. In this case
the factor in the braces of formula (23) tends to
unity. From this it follows that at the initial
section, thermal resistance due to the non-
equilibrium conditions of a flow grows along a
length, achieving a maximum at the end of this
section. In this case the heat transfer rate
decreases accordingly. The dependence of the
correction for @, # 1 upon the water number

3
+— |+
To

2 Z dfcspsvs . (24)

3(1 +Z)* D2cpvNu,

tion ¢, = 1 is satisfied in experiments with very
fine graphite particles (d, ~ 1), [10, 11] over
a wide range of the number Re and mass flow
rate concentration since R, exceeds Ry, by
more than three orders.

Experimental data of [10] are obtained over
a range of mass flow rate concentrations at
p <12 and those of [11], at u > 10. Some
disagreement in the experimental data of these
investigators over a range of 10 < u < 15 may
be apparently explained by a certain deviation
of a particle diameter and by the difference in
the experimental methods used. The calcula-
tions made by expressions (13), (14), (17) and
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(19) have shown that the contribution of
particles to turbulent thermal conductivity of a
flow and the viscous sublayer thickness essen-
tially differ from their limiting values a priori
introduced into known solutions [2-5].

Q>%>1'

o O

Figure 1 gives the nature of the dependence
of relative thermal resistances upon concentra-
tion. From Fig. 1 it is seen that basic thermal
resistance is within a viscous layer adjacent to a
wall, and heat transfer intensification is mainly
achieved due to a decrease in ¢ when introducing
particles into the flow.

1+Z>x%>1.
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F1G. 1. Plot of thermal resistance vs. concentration ¢, = 1
. Re = 10%; ———— . Re = 2-5.10%; curves a, calcula-

tion for experimental conditions [10]; curves b, calculation
for experimental conditions [11]; 1, Rg/Ry; 2, Ry /R,.

Figure 2 gives the comparison of the calcula-
tion results obtained by the theoretical expres-
sions in [1-4] and by relation (21) with the
experimental data of [10, 11]. This comparison
shows that the regard for a real turbulent flow
structure at ¢, = 1 (relation (21)) allows a
good agreement between the experimental and
calculation results to be achieved.

To verify relations (23)+(26) obtained assum-
ing @, # 1 the calculation results are compared
with the experimental ones [4, 5] on gas
graphite flows (d, = 70, 100, 200, 250 z) in
circular tubes (D = 5-33, 8:16, 18-8 mm). The
calculation results show that with an increase
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F1G. 2. Dependence of rate of heat transfer with gas suspen-

sion flow at ¢, = 1 (Re = 2:5.10%); curves a, b, calculation

for experimental conditions [10, 11]; 1, calculation accord-

ing to [1]; 2, calculation according to [1] with regard for

& # &;; 3, experimental data [10, 11]; 4, calculation accord-

ing to (21); 5, calculation according to [4]; 6, calculation
according to [2, 3].

in a particle size the value of thermal resistance
due to the non-equilibrium conditions of a flow
acquires rather essential importance: for particles
(d; = 70 ) the quantity R, exceeds flow core
resistance (Fig. 3) and for particles (d, = 200 u
and more) it becomes commensurable even with
thermal resistance of a boundary layer (Fig. 4).
Consequently, in the experiments [4, 5] there
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F1G. 3. Plot of thermal resistances vs. concentration (d, = 70 &,
Re = 10%.1,R,/R0;2, R;,/Rq; 3, R /Ry,
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Fic. 4. Plot of thermal resistances vs. concentration
{d, = 200 Re = 10%; 1, R,/Ro; 2, R;/Ro; 3, Ry/R, With
regard for expression (23); 4, R ../R,.

occurred essential temperature slip of compo-
nents. Note that in accordance with expression
(24) the dependence of R, upon mass flow rate
concentration is not monotonic (see Figs. 3 and
4). Taking into account in expression (24) not
x = x but a finite length of an experimental

Nu, /Nug

Fic. 5. Dependence of rate of heat transfer with a gas suspen-

sion flow at @, # 1 (d, = 70 ¢ Re = 10*); 1, calculation

according to [1]; 2, calculation according to [1] with

regard for @, # 1; 3, calculation according to expression

(26); 4, experimental data [4]; 5, calculation according to

[4]; 6, calculation according to [2]; 7, calculation according
to [3].
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section [4] a maximum R, removes into the
domain g > 1 and its value essentially decreases.

In Figs. 5 and 6 is presented the comparison
of the experimental relations for Nu,/Nu,
according to [4, 5] with the theoretical expres-
sions obtained in [14] and in the present
paper. According to Fig. 5 (d, = 70 u, Re = 10*

02 : ! L i i
o]

FiG. 6. Dependence of rate of heat transfer with a gas
suspension flow at ¢, % 1 (d, = 200 u Re = 10%); 1, calcula-
tion according to [1]; 2, calculation according to [1] with
regard for £ # &;; 3, calculation according to [4]; 4,
experimental data of [4]; 5, calculation according to expres-
sion {26); 6, calculation according to expression (26 with
regard for expression (23); 7, calculation according to [2];
8, calculation according to [3].

only relation (26) deviating from the experi-
mental data with a mean error of order of 15
per cent is similar to the experimental curve. It
also allows us to explain some decrease in the
heat-transfer rate at u ~ 1 and a relatively weak
dependence of Nu,/Nu, upon concentration.
The same conclusions may be made by analysing
Fig. 6 (d, =200y, Re = 10*). This confirms
the assumption that the effect of temperature
slip of components is a basis of such an abnormal
dependence of the heat transfer rate upon g
A noticeable discrepancy of the experimental
data and those calculated by expression (26)
at small 4 (Fig. 6) may be evidently explained by
the fact that in [4, 5] the conditions of a stabilized
thermal process were not ensured. Then, ther-
mal resistance of intercomponent heat transfer,
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being of importance namely at small y, calcu-
lated by equation (26) is essentially over-
estimated. Correct account of this resistance
according to expression (23) gives a considerable
decrease in the discrepancy of the experimental
and calculation data (Fig. 6).

CONCLUSION

Expressions (21)-(26) obtained in the present
paper allow, according to the known hydro-
mechanical characteristics of a gas suspension
flow, estimation of the heat transfer rate,
elucidation and analysis of the effect of indi-
vidual thermal resistances upon the integral
result. It is obvious that formula (21} is a par-
ticular case of expression (24) since the latter is
transformed into (21) under zero temperature
non-equilibrium conditions of flow components,
that corresponds to ¢, = 1 and is valid for fine
dispersed gas suspensions.

It should be noted that the theoretical
analysis of the non-stabilized heat transfer
conditions at short sections is of interest in a
number of cases and is therefore one of the
trends of further investigations in the filed under
consideration.
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THEORIE HYDRODYNAMIQUE DU TRANSFERT THERMIQUE ENTRE UN ECOULEMENT
D’UNE SUSPENSION GAZEUSE STABILISEE ET LES PAROIS D'UN CANAL
Résumé—On a fait I'étude théorique du transfert thermique & une section fixe entre des écoulcments
dilués gaz-solide (8 < 3%) et les parois d’un canal chauffé 4 ¢ = constante. Sous les conditions considérées,
Péquation d’énergie est réduite a la forme de l'intégrale de Lyon modifiée. La solution est obtenue pour
un transfert turbulent établi, en considérant les effets de particules solides sur les caractéristiques hydro-
dynamiques d’un-fluide de transport. On a établi les relations qui, selon les résultats de perte de pression,
permettent le calcul de flux thermique aussi bien qu’une analyse de I'effet des facteurs principaux sur le
résultat de Pintégrale. Les relations sont obtenues pour un saut de température petit ou essentiel en des
composantes, Dans le dernier cas la résistance thermique additionnelle due au flux fini de chaleur entre

les composants est prise en considération.
Les résultats du calcul sont comparés aux résultats expérimentaux utilisables. On a trouvé leur accord
satisfaisant et on a montré I'effet des résistances thermiques individuell¢s sur le transfert thermique total

EINE HYDRODYNAMISCHE THEORIE DER WARMEUBERTRAGUNG ZWISCHEN
EINER STABILEN GASSUSPENSIONSSTROMUNG UND DEN KANALWANDEN

Znsammenfassung—FEine theoretische Untersuchung der Wirmeiibertragung zwischen verdiinnten Gas-
Fest-Stromen (8 < 3%) und den Kanalwinden wurde in einem konstant gehaltenen Abschnitt fiir
g = const. durchgefiithrt. Unter Beriicksichtigung der Voraussetzungen wurde die Energiegleichung auf
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die Form des modifizierten Lyon-Integrals reduziert. Unter Beachtung des Effektes von den festen
Partikeln auf die hydrodynamischen Eigenschaften des Transportmittels wurde eine Losung fiir die
ausgebildete turbulente Ubertragung gewonnen. Die eingefiihrten Bezichungen ermdglichen sowohl die
Berechnung des Grades der Wirmeiibertragung mit einer Strémung gemiss den Dreieckverlustdaten, wie
die Analyse des Effektes der Hauptfaktoren auf das integrale Ergebnis. Die Bezichungen wurden gewonnen
fiir einen sehr kleinen und auch fiir einen grosseren Temperaturschiupf der Komponenten. Fiir den
letzteren Fall wurde der zusitzliche thermische Widerstand, aufgrund der endlichen Wirmeiibertragung
zwischen den Komponenten, in die Betrachtung einbezogen. Die berechneten Ergebnisse wurden mit den
verfiigbaren Versuchswerten verglichen. Dabei wurde eine zufriedenstellende Ubereinstimmung gefunden
und der Effekt des einzelnen thermischen Widerstandes auf die Gesamtwirmeiibertragung gezeigt.

THIPOOUMHAMNYECHAA TEOPHUA TEIIJIOOBMEHA CTABMJIM3UPOBAHHOIO
ITIOTOKA I'A30B3BECH

AnHoTanua—IIpoBefleHo TeopeTHYeCKOe MCCHEAOBAHWE NPOLECCA TemaooiMeHa HA cTabu-
JMBUPOBAHHOM YYaCTKe pasperKeHHHX rasopucmepcHHX noroxoB {8 < 39%) co crenmamu
KaHada npu g = const. [{aa paccMarpuBaeMEX YCHOBHH ypapHeHHe DHE[TMM IPHBEREHO
K BUAY MopmduupoBaHHOore nATerpana Jatona. Pemenne noiyyeno AasS pesuMa PasBHTOTO
TypOyJNeHTHOTO TPSHCHOPTA C Y4YeTOM BIMAHNA TBEPARX YACTHI] HA THAPOMEXaHWUECKHEe
XapaKTepUCTHKU Hecyllel cpempl. YCTAHOBJIEHB B3aBUCHMOCTH, KOTODHE MHO3BOJAKT IO
CBE[IGHUAM O TIOTEPAX MABJEHUA PAcCUMTATh MHTEHCUBHOCTH TEILIOOOMEHA ¢ IOTOKOM, a
TEKHE AHAIUBUPOBATh BIMAHKHE OCHOBHHIX (AaKTOPOB HA MHTerpAbHHI pesynbTaT. 3aBHCH-
MOCTH NOJYYeHH JJA CIy4aeB NPeHeOPEUMO MAJIOTO M CYINECTBEHHOTO TeMIIepaTypHOTO
CHOJIbKEHIA KOMIIOHEHTOB. B nocaenuem cayyae yURTHBACTCH JONOIHUTEIEHOE TEPMIIECKOE
CONpOTUBJICHEEe, 00ABAEHOC KOHEYHOW MHTEHCUBHOCTH MEKHOMIOHEHTHOTO Tenyoo0MeHa.
Ilposeeno conmocTaBieHne DACYETHHIX PEBYIBTATOR € HKCICPHMEHTANbHLIMU JAHHHIMY,
UBBECTHHIMM B JTepaType. OOHApPY#EHO MX Y[OBIETBOPUTEIHHOE COTIIACKE, A TAK:Ke
HOKABAHO BIUAHME OTHENBHEIX TEDPMMYECKMX CONDOTMBIEHUNI Ha oOmu#t TemnomepeHoc.
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